Combat imposes high demands on the UCAV's flight control system. Whether in aerial combat or an attack on an enemy target, both the UCAV itself and the target can be moving at high speeds. The flight control system must be able to control the aerial maneuvers of the UCAV in response to a dynamic battlefield environment.
Returning to and landing on the aircraft carrier are the steps with the highest accident rate for both manned and unmanned combat aircraft. Therefore, China’s shipborne UCAV will require not only advanced satellite navigation, but also a higher specification of flight control system to achieve a safe landing.
The third element is intelligent attack-defense integrated firing control. The U.S. military classifies UAVs in levels ranging from ACL-1 to ACL-10 (totally autonomous). A relatively complete firing control system begins at level ACL-4. The more advanced generation of shipborne UCAVs such as the X-47B are classified at level ACL-6, that is a UAV with the capacity to deal with sudden threats and targets in the form of multiple drones. At this level, the shipborne UCAV is required to have an autonomous attack-defense integrated firing control system with a significant degree of “intelligence”.
The fourth feature is a high thrust-weight ratio turbofan, achieved at low cost. The turbojet/turbofan engines used on American UCAVs are always derived from civil engines or manned military planes. For example, the X-47B uses the F100-220U turbofan engine derived from the F-100, originally developed for the F-16. The characteristics and combat environment for a UCAV require that its engine should have a low fuel consumption rate, a high thrust-weight ratio, low R&D and purchase costs, convenience for maintenance, and fitness for long-term storage.
Day|Week|Month