Therefore the development of a carrier-borne UCAV involves extremely high research costs and a complex development process. If China intends to commission UCAVs similar to the US carrier-borne X-47B, five technical breakthroughs must be made.
The first is advanced aerodynamic design. It can be seen from the shape of the X-47B that these designs improve stealth, increase flight range, and respond to the demands of air attack and combat. The X-47B, the UK "Taranis", and France's "Neuron" all feature a recessed rear inlet and flying-V wings.
The second step is advanced flight control technology. This is the real technical challenge for the UCAV. The carrier-borne UCAV requires a full range of capabilities covering takeoff, cruise, combat, withdrawal, and landing. The demands on the electronic take-off and landing systems for the moving deck of an aircraft carrier are significantly higher than the requirements for a land-based airport.
A UCAV's flight control equipment adjusts the craft in flight. This requires the flight control computer to implement planning and design according to a series of algorithms as quickly as possible after feedback, and update in response to environment changes detected by sensors.
Day|Week|Month